ProTerra Webinar Series 3#
Circular agro-food systems: The role of livestock in sustainable supply chains and tools to address challenges
Agenda

• Welcome

• Frank Gort, Program manager sustainable innovation, Nevedi – Dutch Animal Feed Industry Association
 Challenges in feed supply chains

• Jean-Louis Peyraud, French National Institute for Agriculture, Food, and Environment (INRAE)
 The role of livestock in sustainable supply chains

• Heleen van den Hombergh, Senior advisor agrocommodity governance, Lead responsible value chains, IUCN
 Match! Smart combinations as the way to go in soy governance

• Q & A
We envisages a world where all businesses:
• contribute to the protection of biodiversity by e.g. switching to non-GMO production
• conserve natural resources and
• ensure that workers and local communities are treated with dignity and respect

The ProTerra Foundation is a non-for-profit organization, located in the Netherlands
Argentina, Austria, Belgium, Belize, Brazil, Canada, Colombia, Eswatini, Germany, Dominican Republic, France, Guadalupe, Guyana, India, Italy, México, Malawi, Mozambique, Netherlands, Norway, Peru, Philippines, Poland, Romania, Russia, South Africa, Switzerland, Thailand, Ukraine, United Kingdom, Uruguay and Zimbabwe.
The ProTerra Foundation in numbers

SOY 2020

CERTIFIED SOY VOLUME

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL 2018</td>
<td>3,511,000.00</td>
</tr>
<tr>
<td>TOTAL 2019</td>
<td>2,988,373.87</td>
</tr>
<tr>
<td>TOTAL 2020</td>
<td>3,032,171.39</td>
</tr>
</tbody>
</table>
Circular agro-food systems: The role of livestock in sustainable supply chains and tools to address challenges
Challenges in feed supply chains

Frank Gort
Program manager sustainable innovation

Nevedi
Dutch Feed Industry Association
Agenda

1. Facts & Figures
2. Core strategy
3. Circular agriculture
4. Sustainable feed supply chains
5. Challenge I: Deforestation
6. Challenge II: Carbon Footprint
7. Facing up to challenges
Fact & Figures

90 companies (members)

11,7 mill. mton compound feed (2020):

<table>
<thead>
<tr>
<th>Category</th>
<th>mill. mton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle feed</td>
<td>4,1</td>
</tr>
<tr>
<td>Pig feed</td>
<td>4,2</td>
</tr>
<tr>
<td>Poultry feed</td>
<td>3,0</td>
</tr>
<tr>
<td>Other Feed</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Turnover sector ca. € 5,1 miljard

5,500 employés (85% male)
What do we want?

Helping to realize a sustainable, climate-friendly, circular agriculture that is internationally leading, further reinforcing our competitiveness and innovation force and strengthening our economic base through cooperation in supply chains

How?

We play an important role in the coming years in close cooperation with supply chain partners, public authorities and NGO’s in
Circular agriculture Nevedi style

Our ambition:

• Reduce CFP animal-based food
• Make the food system more circular
How?

✓ Minimize losses from the food/feed/manure/soil cycle
✓ Source as local as possible, but as global as necessary
✓ Support chain partners to reach climate goals
✓ Maximize the use of co-products, minimize the use of food grade raw materials
Our ambition:

Proven & transparent sustainable import

Meet public and market demands
How?

- Secure access to international markets.
- Transparent about economic & environmental impact
- Support increased use of alternative protein sources
- Continue and intensify efforts in soy and palm oil
- Do not compromise on feed & food safety, animal health & welfare
Challenge I Deforestation

The World’s Soy: is it used for Food, Fuel, or Animal Feed?

Shown is the allocation of global soy production to its end uses by weight. This is based on data from 2017 to 2019.

Global soy production

- Direct human food: 19.2%
- Animal feed: 77%
- Industry: 3.8%

FEFAC estimated that 77% of EU soy imports are from low deforestation risk areas.

EUROPE OVERVIEW

Origins of EU+ soy

- 32.7 MMT Soybean meal available**
- 2.55 MMT EU+ net export embedded soy
- 30.15 MMT EU+ soybean meal consumption

Data sources: Food Climate Resource Network (FCRN), University of Oxford, and USDA PSD Database. OurWorldInData.org. Research and data to make progress against the world’s largest problems. Licensed under CC BY by the author Hannah Ritchie.
Challenge I Deforestation

- EU policy: less dependent on deforestation-risk commodities (legal enforcement)

HOWEVER

- We should remain active in high-risk areas. We only have impact on sustainable sourcing as long as we have a market presence.
Challenge II Carbon Foot Print

- Graph showing carbon footprint of key feed ingredients, with bars for Argentina, Brazil, Canada, China, India, Italy, Paraguay, Russia, Ukraine, and USA.
- Graph indicating the breakdown of carbon footprint by category: Transport to farm, Feed mill production, LLUC, and CFP up to feedmill.

Nevedi
Challenge II Carbon Foot Print

- CFP animal-based products is substantial
- Largely dependant on CFP feed
- Raw materials choices have a large influence.
- Climate targets in supply chains could stimulate avoiding high risk deforestation areas as a result of elevated CFP related to LUC

HOWEVER
- LUC related CFP expires after 20 years
- Support local farmers that meet criteria (carbon credits) and look at broader range of environmental effects / SDG’s
Facing up to challenges

CO-OPERATION
This requires time and effort from all supply chain members worldwide.

CELEBRATE SUCCESSES
Instead of focussing on what is wrong, stimulate and multiply good examples.

TRANSPARANCY
Be open and learn from failures.

MULTI –LEVEL
A successful transition demands co-ordinated action, on various levels.

INTEGRATED
Sustainability is a beautiful thing of many colours. An integrated approach is required to prevent trade-offs.
Thank you
The role of livestock in sustainable supply chains

Jean-Louis Peyraud
Livestock farming is of crucial importance for many EU regions with a diversity of situations

- Livestock are present in almost all regions of Europe, 58% of EU farms hold animals,
- A third of all farm animals are concentrated within a small number of areas,
- On the mean 1 LU/ha EU Agricultural Area.

(Source INRA, based on Eurostat, 2010)
Part 1

Livestock as part of circular and sustainable supply chains
The green revolution was largely based on linear approaches: productivity first

- Systems have become more intensive and more specialized, spatially separated

Monocultures
Mineral N fertilizer
Pesticides

Crops systems & grassland

Livestock systems

High level of N outputs
GHG emissions
Welfare issue
Antibiotics

- Significant productivity gains but
- No consideration of the amount and origin of mobilized resource: resource insecurity
- Loss of soil fertility, loss of biodiversity, degradation of ecosystems
 - Livestock farming has lose a large part of its legitimacy
 - A society calling for agriculture to change
A new paradigm for thinking the future of livestock farming

- A conversion of the agricultural sector is required that targets nearly every aspect.

Connected circularity in planet boundaries: a challenge for livestock

Expected benefits
- Efficient use of scarcely renewable resources,
- Food sovereignty and protein autonomy,
- Recycling biomass between sectors: no wastes,
- Adaptation to climate change,
- Low use of pesticides and mineral fertilisers,
- GHG mitigation and C sequestration,
- Closing nutrient cycles,
- Restoration of biodiversity,
- Restoration of soil fertility and ecosystems.

Difficulties
- Balances are to be found according to local context,
- New coordination between actors of the value chain,
- New business models to share value-added,
- Public policies to support transitions.

ATF-P4F policy brief, (2020)
Avenue for progress: Rethinking the performances of the livestock systems

- Maximising GHG mitigatation and soil C sequestration,
- Recycling to maximize resource use efficiency and avoid losses
- Restoring biodiversity and fostering high natural value farmlands
- Developing Integrated management of animal health
- Preventing and building resilience to pandemics.
- Improving animal welfare

Four domains of sustainability

- Maximising GHG mitigatation and soil C sequestration,
- Recycling to maximize resource use efficiency and avoid losses
- Restoring biodiversity and fostering high natural value farmlands
- Developing Integrated management of animal health
- Preventing and building resilience to pandemics.
- Improving animal welfare

(ATF-Strategic Research and Innovation Agenda, 2021)
Part 2

Mitigating the shadows of livestock farming while maximising the positive contributions
LCA have consistently shown the impacts of livestock

- High impact of Animal based products,
- The impacts of the lowest-impact animal products exceed average impacts of plant proteins (GHG emissions, eutrophication, acidification and frequently land use),
- High variation among both products and producers.

- Maybe simplistic, but reminds us that we need to find ways of improving the sustainability of livestock farming.
1. On farm GHG emission of Livestock sector

<table>
<thead>
<tr>
<th>Sectors</th>
<th>% total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture Livestock</td>
<td>10</td>
</tr>
<tr>
<td>Industry</td>
<td>38</td>
</tr>
<tr>
<td>Transport</td>
<td>21</td>
</tr>
<tr>
<td>Tertiary</td>
<td>12</td>
</tr>
</tbody>
</table>

Livestock emissions (Gt CO₂-eq)

- Europe: 0.25
- World: 8.1

Further emission arise outside of EU. Globally livestock represents 85% of EU Agricultural emission,

- Enteric CH₄ and soil N₂O emissions are major issues.

(FAO, 2019)
1. GHG mitigation options for the EU livestock

- Genotyping low emitting animals
- Improved feed quality
- Improved feeding practices
- Improved herd management
- Improved animal health

- Smart use of manure
- More efficient use of crops
- No specific feed production
- Better agricultural land use

- Increased use of legumes
- Producing green energy (manure)
- Increased Soil C sequestration

From Gerber et al., 2013

EU 12: a 30-40% reduction since 1990. Additional reduction of 40% in 2050.
1. GHG mitigation: soil C sequestration

- **Current C sequestration potential (France)**

- **Additional C sequestration potential for promising levers**

- Considerable variations of C sequestration related to climate, management and vegetation type (high sequestration potential from grasslands)

- Large potential for additional C sequestration: Livestock and grassland play a decisive role

French 4P1000 study (Pellerin et al., 2019)
2. Mitigation of local impacts of livestock farming

- Livestock farming is responsible for
 - 80% of N of agricultural origin present in all aquatic environments,
 - 90% of NH$_3$ emissions of the agricultural sector.

> 60% reduction

- Reducing feed-protein inputs,
- Smart use of manure to avoiding losses between animal and effective N supply to the soil,
2. Mitigation of local impacts: manure management

- **NH3 emission**
 - Housing: 27%
 - Storage: 26%
 - Spreading: 32%
 - Grazing: 15%

 Frequency of scraping, avoiding urine-faeces mixing: Up to -30%

 Covering storage tanks: Up to -80%

 Acidifying manure: Up to -80%

 Burying manure:
 - 30% (24h after spreading)
 - 90% right after spreading

 Henning et al 2011; Martin et al. 2013; CITEPA 2019

- More efficient use of manure allows to reduce mineral N inputs
- Some of the best practices for NH₃ mitigation are also efficient for GES mitigation
3. Livestock and biodiversity: a complex relationship

- Livestock contributes to biodiversity loss through different drivers
- Within each driver, livestock can have positive contributions
3. Livestock and biodiversity: need to consider different time and geographical scales

- Deforestation is a major cause of biodiversity decline
- Livestock (ruminant) can produce biodiversity
 - Diversity of forage species (including honey plants) and grassland types
 - Diversification of land uses, preservation of landscapes, habitats and ecological corridors

- Eu = 10% of the global embodied deforestation: soya, meat, palm oil, cocoa, rubber, timber
- Toward a EU livestock sector with no imported soya

(European commission, 2019)
4. Resources: Do livestock use resource inefficiently?

Livestock farming is more efficient than often claimed

<table>
<thead>
<tr>
<th></th>
<th>Ruminants</th>
<th>Non ruminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg of edible protein (milk, meat) / kg of edible plant protein used as feed</td>
<td>0.10 to 0.30</td>
<td>0.30 to 0.45</td>
</tr>
<tr>
<td></td>
<td>0.5 to > 2.0</td>
<td>0.4 to 1.5</td>
</tr>
</tbody>
</table>

Wilkinson, 2011; Ertl et al., 2015; Laisse et al, 2019)
4. Resources: Food from marginal land? Ruminant can do!

- Livestock use 70% of agricultural land

This part (globally 30% of cropping area but up to 50% in OECD countries) is questionable

This part can only be used by herbivorous:
- Permanent grassland, marginal land
- Sown grassland
- Crops for feed
- Crops for food

This part might be used for crops production but it ensures the provision of ecosystems services

Mottet et al., 2018

- In Europe, permanent Grasslands and rangelands cover 73 M ha (40% Eu AA)
- Marginal land provide 25% of world animal products

Sere and Steinfeld, 1996

Ten Years For Agroecology IDDRRI
5. Livestock farming for more sustainable cropping systems and more fertile soils: some examples

- Reduction of pesticides use
- Crops receiving less pesticides
- Breaking of pest cycles by more diversified rotations

<table>
<thead>
<tr>
<th>t/ha</th>
<th>OM</th>
<th>30</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion (t OM/ha/y)</td>
<td>3.6</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Invertebrates</td>
<td>0.5</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>

Proteases (µmol.h⁻¹.g⁻¹ sol sec)

Soil OM content
Soil erosion
Soil fertility

Eurostat, 2011

Petitjean et al., 2018
6. upgrading LCA to track progress

- No consideration of the multi-functionality of agro-ecological systems
 - Critical aspect for long term sustainability are not considered
 - Give advantage to intensive farming system

- Provide a partly biased vision of resource used by livestock
 - No distinction between non-arable and arable land
 - No distinction between edible and non-edible food used as feed
Part 3
Conclusion
• **Think twice, develop a systemic thinking**
 • Move away from a simplistic plant vs animal opposition,
 • Do not step into a simple protein transitions
 • The shadow of livestock can be mitigated and counterbalanced,
 • Rethinking the interplay between crop and livestock sectors

• **Circularity provides a new ambition and new challenges for livestock**
 • Animals are recyclers by nature: conversion of biomass, production of nature based organic fertilizers,
 • They provide a range of societal goods and services.
• The conditions of success
 • Integrated solutions are needed,
 • Livestock systems must be transformed to fulfil their roles,
 • Diversity of livestock production systems is essential to fit various demand and local contexts,
 • Need to articulate local and global scales, production of food and production of immaterial functions,
 • Need to develop more accurate models to track progress, assess the multi-functionality of livestock agriculture.
Agro ecological Livestock farming is much more than only food production.
MATCH!
SMART COMBINATIONS AS THE WAY TO GO IN SOY GOVERNANCE

Heleen van den Hombergh
IUCN NL May 10-5-2021
The challenge: making scale while assuring quality

In terms of production, but also in terms of sustainability efforts. Dealing with the bulk with integrated standards.
Overall vision on agro commodities

Chain responsibility

Policy/law

Enabling/disabling finance

Consumption patterns/production choices

Resource efficiency

Landscape governance

Capacity building

Land use planning

Monitoring

Commodity standards
Challenges in resource efficiency

• **Feed efficiency**: efficient soy/feed use by livestock
• **Land use efficiency**: efficient soy/livestock production while protecting nature.
more challenges in resource efficiency

Protein efficiency: reducing protein consumption and protein transition towards a more balanced human diet. From 60:40 animal-plant protein to 50:50, 40:60
Challenges in chain responsibility

• *The Trend: Conversion free beyond certification:* making scale in total physical value chain with overall policies/regulation & monitoring technologies. (3 % worldwide, 19 % European soy use certified deforestation free)

• *but...build on what we’ve learnt: Certification/verification beyond conversion free:* application of quality environmental and social standards: broaden their application.
Overall vision on agro commodities

Chain responsibility
- Landscape governance
- Resource efficiency
- Capacity building
- Land use planning
- Monitoring
- Commodity standards
- Policy/law
- Enabling/disabling finance
- Consumption patterns/production choices

Capacity building
- Chain responsibility
- Landscape governance
- Resource efficiency
- Land use planning
- Monitoring
- Commodity standards
- Policy/law
- Enabling/disabling finance
- Consumption patterns/production choices
Challenges in landscape governance

- Taking *and keeping* farmers onboard - across a jurisdiction/cross-commodity
- Conservation and its connectivity: beyond isolated patches
- Government role in overall legal compliance
- Green finance
- Andso many more
Set the bar, raise the floor

- Set the bar of value chain requirements, while raising the floor of production landscape governance.
- A collective search to really contribute to climate mitigation, conservation and social justice.
Dealing with public pressure

“Clean up your value chain!”
deforestation & conversion free
human rights due diligence
Or carbon footprint. Pressures come often in isolation.

Public pressures & legislation => sustainable solutions overall or...... steps back in quality criteria and abandonment of risk landscapes?
Strengthening the baby in the bathwater
Criteria and control: the role of integrated standards

• **Resource efficiency**? Still sustainable production is needed. MATCH!
• **Value chain responsibility**? Standards as examples and tools for control. Also in mandatory settings. And in physical supply chains. MATCH!
• **Landscape governance**? Standards as guidance for improvement and as proof for compliance: MATCH!
Collaborative Soy Initiative

Matchmaking between insights, initiatives, tools.

“Meta meetings”, working groups, webinars, info hub in development.

for example: June 2nd, with ProTerra”: the volatility of soy and its effect on sustainability.

thecollaborativesoyinitiative.info
A just world that values and conserves nature.

CONTACT

E: heleen.vandenhombergh@iucn.nl
Thank you for your participation!

Emese van Maanen
Emese.vanmaanen@proterrafoundation.org